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In  the present study we examine the steady axisymmetric creeping flow due to the 
motion of a liquid drop or a bubble which is partially covered by a thin immiscible 
fluid layer or film. The analysis is based on the assumption that surface-tension forces 
are large compared with viscous forces which deform the drop, and that the 
circulation in the film is weak. The latter assumption is satisfied provided that the 
film-fluid viscosity is not too small. A perturbation scheme based on the thinness of 
the fluid layer is used to construct the solution. 

One of the principal results is an expression for the drag force on the complex drop. 
We also find that the extent to which the drop or bubble is covered by the film has 
a maximum value depending on the magnitude of the driving force on the film. In 
addition, we find the rather interesting result that when the ratio of the primary drop 
viscosity and bulk fluid viscosity is greater than 4, the circulation within the film may 
have a double-cell structure. 

1. Introduction 
Heat- and mass-transfer processes involving drops and bubbles have been and 

continue to be an important area of research often requiring an understanding of the 
associated hydrodynamics. The recent development of direct-contact heat and mass 
exchangers has resulted in the need to study the fluid mechanics of two-fluid drops. 
The laboratory observations of Mori (1978) show the wide range of two-fluid drop 
configurations which are encountered in these processes. Here we study the motion 
of one of these two-fluid drop configurations. Namely, we examine the uniform 
translation of a two-fluid drop comprised of a primary drop, which is partially 
surrounded by a thin layer of a second immiscible fluid, i.e. a fluid film (figure 1).  
Attention will be restricted to the case when the film covers the rear of the primary 
drop and the motion is axisymmetric. This seems to be the most frequently observed 
situation. The analysis is also applicable to cases in which the primary-fluid region 
is a gas bubble. This corresponds to the situation in which the primary-fluid viscosity 
is very small. In this paper we use the term ‘drop’ to refer to both bubbles and drops. 

The following simplifying assumptions have been made in the analysis. First, the 
fluids a.re assumed to be incompressible and the inertial effects are neglected in each 



296 R. E.  Johnson and S. S. Sadhal 

1 Uniform stream LI, 

Radius R ,  
' droplbubble 

R =  
R =  

e = o  \ 
Fluid film 

FIQURE 1.  Fluid-film geometry. 

of the three flow regions; the outer bulk fluid, the interior primary-drop Auid, and 
the fluid film. Consequently, the Stokes equations describe the fluid motion in each 
region. 

Surface-tension forces of the three fluid-fluid interfaces are assumed to be large 
compared with the viscous forces which deform the drop, and the surface tensions 
are constant, i.e. the effects of surface-active agents are ignored. Therefore, to leading 
order the drop consists of a spherical interface of radius R, a t  the front of the drop 
separating the bulk fluid and primary-drop fluid (# < 8 < K), and two nearly 
spherical surfaces a t  the rear bounding the fluid film (0 < 8 < #); R = R,(1 + e f i ( S ) )  
and R = R,(l-ef,(O)). Here e is the thinness parameter given by the ratio of the 
characteristic film thickness to and the primary-drop radius R,, i.e. e = t,/R,. In  
mathematical terms, the assumption that the surface-tension forces are large 
amounts to assuming that for each interface there is a capillary number of the form 
,uUo/cr which is small, where U, is the free-stream velocity, and I(. and cr are the 
viscosity and surface tension appropriate for each interface. The specific conditions 
will be made precise in $ 2 .  Note, however, that for arbitrary values of the three 
surface tensions the two radii R, and R, would not be equal, and therefore the 
leading-order shape of the drop consists of two spherical caps of different radii. In 
particular, for the surface-tension-dominated problem considered here there is a 
pressure jump equal to 2crlR for each of the fluid-fluid interfaces, where cr is the surface 
tension and R the surface radius. Consequently, with the outer bulk-fluid pressure 
taken to be zero, the pressure within the primary drop evaluated across the two 
fluid-film interfaces is equal to 2 ( 8 ,  + cro)/Ro, where 8, and cr, are the surface tensions 
of the inner ( R  = Ro(l -efo))  and outer ( R  = Ro(l +efi)) fluid-film interfaces 
respectively. Similarly, evaluating the primary-drop pressure across the front 
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interface between bulk and primary-drop fluids having surface tension a, and radius 
R, gives 2a,/R,. Since the calculated primary-drop pressure must be the same in each 
case, we must have R1/Ro = g,/(6,+ go). Therefore, if a, x 6, + uo then R, x R,, and 
the complex drop is nearly spherical. In  fact, the experimental literature indicates 
that the special case R, x R, is often observed (Mori 1978), at least for liquid-gas drops 
for which there is literature available. We will limit our study to this special situation, 
in which case the analysis is considerably simplified; however, we still expect the 
qualitative behaviour of the solution to be useful when this is not the case. 

Note that in the present problem the condition for an approximately spherical 
interface is that the capillary numbers must be small. This is in contrast with the 
classical problem of a drop without a film, where the distortion from sphericity is 
proportional to the Weber number (Taylor & Acrivos 1964). Owing to the unique 
symmetry in the classical drop problem, the jump in the viscous normal stress at the 
drop interface exactly cancels with the hydrostatic pressure. Consequently, deviations 
from the spherical shape are due to inertial effects, which are measured by the Weber 
number. In  the present problem the geometry is considerably complicated by the 
presence of the film, and the viscous stresses do not cancel with the hydrostatic 
pressure. Consequently, we find that distortions from sphericity are capillary-number 
dependent. 

We make a further assumption that the mechanism driving circulation within the 
film is sufficiently weak, so that the film-fluid velocity is small compared with the 
free-stream velocity. The fluid velocity within the film is readily estimated from a 
consideration of the continuity of shear stress at the fluid-film interfaces. The shear 
stress a t  the outer film interface will be of order pUo/Ro and that a t  the inner interface 
will be of order ,4U,/Ro, where p and ,4 are the viscosities of the bulk fluid and 
primary-drop fluid respectively. The shear stress within the film will be of order 
pfuo/t,, where to is the characteristic film thickness, u, is the characteristic film-fluid 
velocity and pf is the film-fluid viscosity. Consequently, stress continuity gives the 
magnitude of the film-fluid velocity as uo/U,  = O(ep/pf, e,G/pf). Therefore, since 
E 4 1,  uo will be small provided that the viscosities of the bulk fluid and primary-drop 
fluid are not too large, i.e. the driving force on the film is sufficiently weak. Note that 
the film-fluid velocity is generally small because the fluid layer is thin and the 
restriction on the viscosities is not very severe. 

The solution is constructed by expanding the velocity and pressure fields in terms 
of the thinness parameter E .  The analysis closely follows that considered by Johnson 
(1981) for the problem of a thin film on a solid sphere. Since the film-fluid velocity 
has been assumed to be small, the leading-order problem corresponds to the Stokes 
flow past a drop having a stagnant can over that portion of the drop covered by the 
film. This leading-order problem has been recently solved in connection with drops 
having a stagnant cap of surfactant. The reader is referred to Sadhal & Johnson (1983) 
for a detailed discussion of this problem and related work. At second order, motion 
in the film is driven by the leading-order shear stresses exerted at the fluid-film 
interfaces by the motion of the primary-drop fluid and bulk fluid. Finally, the 
circulation in the film and the film’s shape result in a second-order correction to the 
primary-drop and the bulk-fluid flow fields. We note that the approximations made 
for the film which are based on the thinness of the fluid layer are analogous to those 
of classical lubrication theory. 
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2. Formulation 
Since inertial effects are neglected, the outer bulk-fluid velocity U and pressure P, 

and the primary-drop fluid velocity 0 and pressure P satisfy the Stokes equations 

1 pv2u = UP, V.U = 0, 

1;v20= V P ,  u.0= 0. 

Inherent in the approximation of negligible inertial effects is the assumption that the 
Reynolds numbers Re = pU,,R,,/,u and Re = p^U,R,/,L are small (p and p̂  are the 
densities of the bulk fluid and primary-drop fluid respectively). Similarly in the fluid 
film the velocity u and pressure p are assumed to satisfy the Stokes equations 

ppv2u = V p ,  V’U = 0. (2) 

The parameter, which must be small for the Stokes-flow approximation to be 
justified, has been shown by Johnson (1981) to be €Re, = epPnu,t,/,u,, where p f  is the 
density of the film fluid. 

In the following, dimensionless quantities will be used. Velocity and spatial 
coordinates will be non-dimensionalized by U,  and R, respectively. Stress and 
pressure will be non-dimensionalized in the bulk fluid, primary-drop fluid and film 
fluid by pU,/R,, 1;U,/R, and p, U,/R, respectively. 

The problem is formulated using spherical polar coordinates (R,  8, @), where 0 is 
the angle between a field point and the symmetry axis, which is taken to be the z-axis 
with unit vector e,. The components of the velocity field in spherical coordinates for 
the axisymmetric flow considered here are U = (77, V ,  0), 0 = (0, P, 0) and 
u = (u,  w , O ) .  

The boundary conditions for the outer bulk fluid far from the drop are 

U+e,, P+O as R + m .  (3) 

At each of the fluid-fluid interfaces we require: (i) continuity of the tangential 
component of velocity, (ii) no fluid flux across the interface, (iii) continuity of the 
shear stress, and (iv) the jump in the normal stress equals the product of the surface 
tension and the sum of the principal curvatures of the surface. 

Therefore the boundary conditions at outer film interface R = 1 +efi(e) are 

v- V+€- (u-U)+0(€2)  afl x 0, 

u - € - V + O ( € 2 )  afl x 0, 

ae 

ae 
af 1 u-€- V + 0 ( € 2 )  w 0, ae 
P 
Pf 

‘ T R e - - T R e + O ( E )  x 0, 

(4) 

where the components of stress in spherical coordinates have been introduced (TRR 

and rRe for the film fluid; T R R  and T R ,  for the bulk fluid; and !PRR and !PRO for the 
primary-drop fluid). As discussed in 0 1 ,  the capillary number PI = ,uf U,,/cr, is 
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assumed to be small. The curvature K~ is given in terms of the fluid-film profile 
function fl(0) by 

+0(€2). ( 5 )  

Similarly, for the inner film interface R = 1 -efO(0) we have 

I ZI- P-€-(u-O)+O(e2) afo x 0, 

u+S--V+O(€2) Y o  x 0, 

a0 

a0 

O+e- af 0 P + O ( E 2 )  x 0, 
ae 

where the capillary number Po = ,uf Uo/a0 is also assumed to be small, and the 
curvature K~ is given by 

+0(€2). (7) 

Lastly, the boundary conditions a t  the front interface are applied a t  R = 1 after 
assuming R, x R, (al x cro + so) as discussed earlier, and are given by 

I v = P ,  u=O=o, 

where the capillary number /3 = fiUo/a, and (,u/I;)P are assumed to be small. The 
last boundary condition assumes that the interface is spherical and will only be 
satisfied approximately. An assumed spherical shape will satisfy this condition with 
an error O(P, (,u/&) P). We will see that this deviation from the spherical shape is small 
compared with the deviations of the fluid-film interfaces. 

As discussed in Q 1, we anticipate that for a thin fluid film a leading-order flow in 
the outer bulk and primary-drop fluids drives motion within the film, which in turn 
leads to  modifications of the flow in the outer fluid and primary drop. Hence we 
assume 

(9) 

The large constant pressure term 2//3 in is necessary so that  the drop is nearly 
spherical to leading order (see (8)). At each order in e the velocity and pressure fields 
satisfy the Stokes equations. 

.... 1 - 2  0 = 0 0 )  + € 0 1 )  + . . . , P = -+m + e m  + 
P 

For the film fluid we assume that the velocity field is given by 
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Note that the radial component of velocity u is nearly perpendicular to the fluid-film 
interfaces and is assumed to be small compared with the tangential component v. This 
is because the surface tension forces are large compared with the deforming effect 
of the stresses on the fluid-fluid interfaces, and therefore the slope of the interface 
will be small. A conequence of this slope being small is the fact that the velocity 
perpendicular to the interface will be small in comparison with the tangential 
component. Note, however, that there will generally be a small region of non- 
uniformity near the three-fluid contact line e = $. This is because the interface slopes 
or contact angles at 8 = 4 are material properties which would be specified for given 
fluids and may not be small (see Dussan V. 1979). The characteristics of this region 
of non-uniformity are very similar to those discussed by Johnson (1981) for the 
analogous problem of a thin film on a solid sphere, and the reader is referred to that 
paper for a complete discussion. The point to make here is that the details of the fluid 
motion in this small region near the contact line does not affect the leading-order 
solution being considered here. 

For the fluid-film pressure we take 

2 1  
p = -+-p"'+p'2'+... 

P1 e 

As before, the constant pressure term 2/P, is required so that  the interface is nearly 
spherical (see (4) and ( 5 ) ) .  The next term, i.e. p ( l ) / ~ ,  is the pressure term required 
to balance the viscous-stress term in the equation of motion. This pressure term is 
large and of order s-l owing to the fact that the film is thin and the radial derivatives 
are large compared with the tangential ones. This is essentially one of the standard 
results of classical lubrication theory. 

For the thin film we introduce the film variable [ = (R- i)/s, and the leading-order 
governing equations for the fluid motion within the film become 

Here we see the balance between the pressure and the viscous stress. 
The boundary conditions a t  the two fluid-film interfaces are further simplified by 

expanding the variables associated with the bulk and primary-drop fluids (27, T R R ,  

TRe, 0, FRR and PRO) in a Taylor series about R = 1. By doing this for the conditions 
at R = 1 + sfl(e) ([ = fl) we obtain 

afl  z 0, U-€-v z 0, ae 

Here i t  is understood that the bulk-fluid variables are evaluated at R = 1 and the 
film-fluid variables are evaluated at [ = fl(e). 

By substituting the perturbation expansions for the velocity and pressure fields 
we finally arrive a t  the conditions at R = 1 +efl(e) as 
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I n  obtaining these equations we have used the expansions for the stresses 

and we include the magnitude of the hydrostatic pressure pgR, in (18) .  A few points 
concerning the hydrostatic pressure will be made shortly. 

From the last boundary condition (18), note that we now have a specific restriction 
on the capillary number pl, namely P1 = 0(s2) .  Note also that the error term qu/,uf 
is small, since this is equal to the magnitude of the film velocity, which has been 
assumed small. 

Owing to the large fluid-film pressure p ( l ) / s ,  variations of the fluid-film interfaces 
from spherical are large compared with the variation of the front interface 
(q5 < 0 < x). In  particular, from (18) we see that the variation in the fluid-film 
interface &fl(e) is of order PJs. As discussed earlier, the variation of the front interface 
from spherical is O(P, @/&) P). Since p = &@/,uf) (P1/e) ( 1  + ~?,/g,)-~, we can see that 
/3 is small compared with the film-interface variation PI/& since &,L/pf has been 
assumed small. Similarly (p /& )P  is small since e,u/,uf has been assumed small. 
Consequently, i t  is sufficient to assume that the front interface is spherical, with the 
associated error being of higher order than that considered here. 

Furthermore, since the problem realistically pertains to a drop moving in a gravity 
field, we should point out that  in the normal-stress condition (18)  we have neglected 
the hydrostatic pressure compared with the large pressure p ( l ) / e  generated in the film. 
This assumption implies the following weak restriction on the validity of the present 
solution. Since we are assuming that the hydrostatic pressure is small compared with 
the pressure in the film, which is very large, we require pgR, 6 &-'pf U, /R ,  or 
pgRi/,uf U, 4 &-l. Now, the magnitude of the drop velocity is readily estimated from 
the fact that  the viscous-drag force balances the buoyancy force and drop weight, 
i.e. pU,R,  = O[pgR;(l--p^/p)] ,  the contribution of the film to the weight being 
negligible since the film has a small volume. Therefore, after substituting for the 
magnitude of the velocity, our condition becomes O( 1 - f i /p)  % e,u/,uf 4 1 .  I n  physical 
terms this simply says that the density difference between the drop and bulk must 
be large enough (simply larger than some small number) so that  the resulting drop 
velocity is not too small. More specifically, the drop velocity must be sufficiently large 
so that  the corresponding viscous stresses produce a film pressure that is large 
compared to  the hydrostatic pressure. Consequently, the present analysis does not 
consider the case when the drop density very nearly equals the density of the bulk 
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fluid, in which case the drop moves very slowly. This restriction is relatively weak 
by virtue of the fact that the film pressure generally dominates the other stresses 
because the film is thin and therefore the film pressure is O(l/e). 

The analogous boundary conditions at the interface R = 1 -€fa(@) are obtained 
from the above equations (14)-( 18) by interchanging U,  V ,  TRe, pl, ,u and fl with 0, 
v, [PRO, -Po, @ and -fo. Note that to obtain the conditions we also use the 
approximationpRR x -16+0(1) x -2/p+O(l),wherep = @U0/(6;,+a0),andneg1ect 
the hydrostatic pressure. The normal-stress condition in this case also gives a 
restriction similar to that obtained before, namely = O(eZ). Furthermore, it is easy 
to show that the deviation of the inner film interface efo(B) from spherical is also 
generally large compared with that of the front interface ($ < 8 < n). 

Finally, from the boundary conditions and governing equations we obtain the 
following hierarchy of problems. 

At leading-order we have 

with the boundary conditions 

Note that the normal-stress condition has been approximately satisfied by the 
pressure with an error O(p, @I,&)@). As mentioned in $1, this problem corresponds 
to a spherical drop with a stagnant cap for 0 < 8 < $. 

The leading-order fluid-film problem is 

with boundary conditions 
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The film profile functions are determined from 

with boundary conditions which will be discussed shortly. 

are determined by 
Lastly, the first correction to the motions of the bulk fluid and primary-drop fluid 

with the boundary conditions 

where T((& and are obtained from the corresponding leading-order expressions 
(17) by substituting U(l) and al) for U ( O )  and Do) respectively. Note that in obtaining 
the boundary conditions for 0 < 8 < @ we have used the leading-order conditions on 
R = 1, U0) = Do) = 0, and the fact that on R = 1, aU(O)/aR = aO(O)/aR = 0. The 
latter result is readily found from the continuity equation. Also, far from the drop 

v C 1 ) , P 1 ) + O  as R+m. (33) 

It is convenient to define the non-dimensional film thickness t(0) = fo(8) +fl(S), and 
then to combine the governing equations for fo and fl by adding them to give 

From the equations for fo, fl and t i t  is easy to see that fo and fi are related to t by 

Taking the non-dimensional thickness t(0) to be equal to unity at  the rear of the 
sphere 8 = 0, using symmetry at 8 = 0, and requiring the film to vanish a t  the 
three-fluid contact line 8 = @, gives the boundary conditions t(0) = 1,  at(O)/ae = 0 
and t ( $ )  = 0. We will see that, although (34) is of second order, three boundary 
conditions are necessary because the pressurep(') contains an additive constant which 
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will be determined by one of these conditions. Furthermore, the condition t(#) = 0 
is complete when the contact line position is specified. In the appendix the position 
of the contact line is determined in terms of the surface tensions and contact angles 
from the condition of global force equilibrium on the film. 

The final point to make here is that the volume of fluid in the film is assumed to 
be known. Therefore, for a given volume the characteristic film thickness to or 
equivalently E = to/Ro is determined by the relation 

film volume x 2xR;s t(0) sinBd6 = 27cR;~y(#). (36) 

3. Solution 
3.1. The leading-order prirnary-drop and bulk-Juid motion 

As already discussed, the leading-order motion of the primary-drop and bulk fluid 
governed by (19) and (20) is analogous to the problem of a drop having a stagnant 
cap of surfactant. Recently Sadhal & Johnson (1983) obtained an exact solution for 
this problem using Collin's (1961) method to solve the dual-series equations which 
arise from the mixed boundary conditions due to the stagnant cap. In that solution 
the stream function Y(O) and P ( O )  are given by 

00 

y(0) = (R1-;)sinOT;'(cosB)+ I: C,*(R2-k-R-k)sin8T;1(cos8), (37) 
k-1 

00 

P(O) = !R2(R2- l)sinOT;l(cos8)+ I: C$(Rk+3-Rk+1)sinOT;1(cos8), (38) 
k-1 

where T;1 denotes the associated Legendre functions 

sin 8 T;'(cos 8)  = J pk(x) dx, 
cos 8 

and 

(39) 

where &(%) is the Legendre polynomial. The corresponding velocity fields are given 
by 

Prior to this solution only approximate numerical solutions were available. The 
pressure fields are easily obtained, but are not presented here since they will not be 
used in the subsequent analysis. 
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3.2. The leading-order jluid-jilm solution 

From (21), (23) and (25) we see that the pressure is a function only of 0, and we find 

dl) = iG(0) (((- 2fi) + T ( 0 )  c+ B(0) ,  (42 ) 

where 

p(0) = --TBo(l,O). f i  T O )  

k 
(45) 

are easily determined from the leading-order solution (37) and (38). We 
obtain B(6) from the physical constraint that for steady flow the net volume flux 
through a section of the fluid film must be zero, i.e. 

giving 

= g T ( f o - f ~ ) + f G ( f , 2 - f , f l - ~ f ~ ) .  

The condition (46) is simply an integral form of the continuity equation, which is 
easily obtained from (22). 

From the continuity equation (22) and the boundary conditions (24) and (26) on 
u(l) we find 

~ ( l )  = - i (G+Gcot8)  [(3+fo-3f1((2-f02)] 

-+(t2 -f$) (T' + T cot 6-Gfl) - (B'+ B cot 0) ( E + f o )  -Ui(P-+T) t ,  (47) 

where a prime denotes differentiation with respect to 6. From the velocity field 
(s2ut1), sdl)) the stream function 9 for the fluid film is found to be 

9 = -E2sin6(~G[E2(E-33fl)+f~(fo+3fl)I+~T(E2-f~)+B(E+fo)}. (48) 

At this point the film solution is determined in terms of the film thickness t(0) and 
the profile functions fo(6) and fi(0). These are determined from (34) and (35), 
where the pressure p( l )  is given by (43) as 

I n  $ 4  the film thickness t(8) will be computed numerically for a variety of flow 
conditions, and the additive constant pressure term ~ ( ~ ' ( 0 )  is found as part of the 
solution. 

3.3. The second-order solution in the primary drop and bulk JEuid 

The solution to  the second-order Stokes-flow problem (29) with boundary conditions 
(30)-(33) is obtained using the method given by Sadhal & Johnson (1983). The stream 
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functions !P) and P(I) are introduced, and the corresponding velocity field is given 
by (41), replacing the superscript zero with a one. The Stokes equations become 

where 

The boundary conditions (30)-(33) are given below. 
(I) At the outer fluid-film interface, R = 1 ,  E =fl, 0 < 8 < $: 

( a )  the tangential velocity is specified 

( b )  The radial velocity vanishes 

(11) At the inner fluid-film interface, R = 1 ,  < = -fo, 0 < 6 < $: 
( a )  the tangential velocity is specified 

(b)  The radial velocity vanishes 

(111) At the front interface, R = 1 ,  q5 < 6 < Z: 
( a )  the radial velocity vanishes 

yw = qm = 0. 

( b )  The tangential velocity is continuous 

a y m )  a y v )  -- -- 
aR i3R ' 

( c )  The shear stress is continuous 

(IV) Far from the drop 

! W ) + O  as R+m. 

(53) 

(54) 

(55)  

The general solution of (50) satisfying condition (52) ,  (54), (55) ,  (58) and the 
requirement that  the motion inside the drop be bounded is 

m 

k=l 
!W) = Z Dk(R2-k - R-") sin 6 T,-'(COS 6 ) ,  

(59) 
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where as before Ti'(cos6) denotes the associated Legendre functions (39). The 
remaining four boundary conditions (51) ,  (53) ,  (56) and (57)  may be recast into the 
following two sets of Legendre-series equations : 

(2k+ 1)GkTi1(cos8) = 0 ($6 < 8 < n), 
k-1 J 

where Hk = Bk-Dk. 

(60)  is 
Following Sneddon (1966), the exact solution of the first set of dual-series equations 

where &(8) is defined in (60) ,  r denotes the Gamma function, and P$~(COS u)  is the 
Jacobi function, which may be expressed as 

Consequently, substituting (64) into (62) and integrating by parts gives 

cos +u 
(k + 4) - [(k +2j) sin& cos (k +2j) u 

sin2 2ju 

-&sin (k + 4) u cos &] K(u)  du, (65a)  

where 

The second set of equations (61)  are readily solved using the orthogonality principle 
for the associated Legendre functions Ti1. Taking g = cos 8, we find 

1 f l  

J [ T ~ ' ( ~ I ) I ~ ~ Y  
-1 

1 

= $k(k+ 1 )  (2k+ 1 )  (q-4)  Til(g) dg. 
cos ' 
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Finally, we have from the relations between Gk, Hk and 

3.4. The drag force 

The drag force on the two-fluid drop is easily shown to be 

drag = - 4xp U ,  R,[C: + eD,] 

where C:, 0, and H ,  are given by (40), (65) and (66) respectively. This is the well 
known result that the drag force is proportional to the Stokeslet strength (the 
Stokeslet being the solution of the Stokes equations corresponding to a point force 
in unbounded fluid). 

Now G, can be simplified as follows: 

4 2  G, = - [i cot W s i n s  -4 cosiq5l K(q5) 
x 

cot &u[i cos h-4 sin& cot +u] K(u)  du --I," 4 2 %  

2 4 2  9 
= - { 2 C O S ~  tq5K(q5) + 3 1 cos2 +u sin &K(u) du 

x 0 

After substituting for K(u)  from (65b) and noting that the order of integration in the 
last term may be changed, we have 

du tan48 Ain 8 Q(8) d8 1 cos2 +u sin @ 
GI = - 242 ( 2  cos3MK($) + 3 J9[ 

x 0 8 (cos8-cosu)~ 

} de, 
2 4 2  C O S ~ W  + 44 COB i+ (cos e- 4)+ + 3( Cos 8 - cos #)+ 

where Q(0)  = -f@+pq), with q and 4 given by (51) and (53). For H ,  we find 

3 9  
H I  = 41 [q(8)-&6)]sin28d8. 

0 

where 

In order to evaluate G, and HI we use the following expressions for q(6) and &6), 
which are determined from (51) and (53): 
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Using the leading-order solution, T(& 1,O) and pi;( 1,8) are found to be 

T(!i(l,8) = R- - [ A ( y ) l R - 1  

3$ 
W 

= 2 I: (2k+1)ckTi1--Ty1, 
k-1 P+$ 

Pii(1,O) = [ R- A ( T ) I R - l  - 

3P 
a, 

= - 2  (2k+1)CkTi1---G1, 
k-1 P+P 
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where 

The C,* are given by (40). Furthermore, from the results of Sadhal & Johnson (1983), 

Note that it is easily shown that Z$L( 1,8) C 0 and Pi:( 1,8) 2 0, i.e. the shear stresses 
exerted on the fluid film are towards the rear of the drop. 

Finally, after substituting q and 8,  (71) and (72), into G, and Hl and using the 
relations forfo andf, in terms o f t ,  (35), we find 

where 
do = -C:, 
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s(e) = ~$‘i(i,e)t(e), &e) = P’$(i, e)t(e),  

0 

}do, 
22/2 C O S ~ & #  

3 4  
I [$;F(B)]  =--I F(B)(l-cos8) c o s ~ ~ c o s - 1  

+ l / t  cos $4 (cos e- cos #)i + - 
3 (cos e - cos # ) I  

3 6  
J [ # ; F ( 8 ) ]  = z j  F(8)sin20dB, 

0 

A discussion of the leading-order drag term do has been given by Sadhal & Johnson 
(1983), and will not be repeated. A t  second-order the constants d,, d, and d ,  are found 
to be positive. Consequently, a physical interpretation of each of the drag-correction 
terms can be made as follows. In  the term (8-$ ,u / ,uf )d ,  the first part involving d 
represents a drag increase due to the increased size of the drop associated with the 
presence of the film, and the second part -$PIPf is a drag-reducing effect due to the 
lubricating nature of the film, i.e. the small slip-velocity a t  the film interface decreases 
the drag. Note that if uo %- 8, then 8 is small and there is little drag increase from 
the first term, i.e. the film does not significantly increase the size of the drop. This 
is because when v0 %- 8, the outer film interface is much stiffer than the inner interface 
and most of the film deformation due to the pressure within the film occurs at  the 
inner interface. A similar interpretation may be made for the term (52 --@/,uf) d,. The 
first part 52 is a drag increase due to the fact that the presence of the film, i.e. its 
finite thickness, restricts the flow inside the drop. When 8, B uo this effect is small. 
The second part( is a drag-reducing lubrication effect of the inner film interface. The 
remaining term t(,u/,ur)d2 always produces a drag increase. This term can be 
attributed to the coupling effect between inner and outer film interfaces. For example, 
motion of the film fluid at the outer film interface due to the shear stress there is felt 
a t  the inner interface owing to mass conservation in the film. In particular, since 

1 , O )  < 0 film fluid near the outer interface is driven towards the rear of the drop, 
naturally feeding a return flow near the inner interface. This reduces the slip velocity 
a t  the inner interface and thereby increases the drag. A similar argument may be made 
for the inner film interface where also tends to drive film fluid towards the rear 
of the drop, and hence ultimately reduces the slip velocity at the outer interface. Note 
that the total drag correction is a net increase when p/pf < 3 8  and < 352. 

4. Results and discussion 
In  this section we examine the characteristics of the fluid film and the drag-force 

correction terms for a variety of flow conditions. We begin by considering the solution 
of (34)  for the film thickness t(0).  This is most easily done by considering the equation 
obtained from (34) after differentiating once with respect to 8. We find, after using 
the expression for i3p(l)/atY, 
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where 

and g ( B , $ )  is given by (73b) .  The boundary conditions for (76)  are as before, 

(78)  
at 

ae t (0) = 1 ,  - ( O )  = 0, t ( # )  = 0, 

and the additional condition 

obtained from the original second-order equation (34). Here we see that (76)  is of the 
third order and we have four boundary conditions, one of which essentially 
determines the unknown constant p(l)(O). 

From (76)  and (77)  note the somewhat-surprising result that the film thickness 
depends on the bulk-fluid viscosity p but is independent of the primary-drop viscosity 
I;. This can be explained as follows. The primary-drop fluid affects the film thickness 
through the action of its shear stress a t  the inner film interface. Furthermore, the 
viscous stresses in the primary drop are a consequence of the motion induced in the 
drop by the contact between the bulk fluid and primary drop fluid at the front 
interface of the drop. In  particular, the shear stress is continuous at  the front of the 
drop, and therefore the magnitude of the shear stresses inside the drop must be equal 
to the magnitude of the stresses in the bulk fluid. In other words, it is the viscous 
stresses in the bulk fluid which drive the overall motion. Consequently, it is the 
magnitude of these stresses and therefore the viscosity of the bulk fluid p which 
appears in the coefficient a (76) .  The magnitude of the driving force on the film is 
characterized by the coefficient u and will be referred to as the driving-force 
parameter. 

Equation (76)  with boundary conditions (78)  was solved for specified values of the 
driving-force parameterausing the shooting method with afourth-order Runge-Kutta 
scheme. The quantity ~(‘ ’ (0)  was varied until t ( # )  = 0 was satisfied for a given value 
of q5. Recall that q5 is determined in the appendix by (A 1)  and (A 2) for specified values 
of the contact angles and surface tensions. 

One feature of the solution found is that for a given value of u there corresponds 
a maximum value of 4 for which t(q5) = 0 can be satisfied. This result is shown in 
figure 2, where is plotted versus a for a between 0.01 and 100.0. As can be 
expected the maximum extent of the drop which may be covered by the film, i.e. 

monotonically decreases as the driving force or a increases. Note that for a given 
value of a any value of q5 less than $,,, is a possible steady-state solution, and for 
each of these solutions there corresponds a specific value ofp(l)(O). The specific values 
of ~ ( ” ( 0 )  are of little practical value and therefore will not be presented. The general 
character of t(0) is that it  monotonically decreases from unity a t  0 = 0 to zero at  

In  figure 3 the volume factor y (4 )  defined in (36)  is plotted versus the contact-line 
position 4 for a few values of a. The last point on each curve corresponds to # = #,,,. 
As pointed out earlier, for a given film volume this information determines the 
characteristic film thickness to.  

The drag-force correction factors d l ,  d, and d, are presented in figures 4, 5 and 6 
for the viscosity ratios b/p = 0, 1.0 and 100.0 respectively. The results are plotted 

e = 4. 
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a 

FIQURE 2. The maximum value of q5 as a function of the driving-force parameter a. 

$ (Tad) 

FIUURE 3. The volume factor y as a function of the contact-line position q5 and the driving-force 
parameter a. The largest value of 4 for each a is Om,,. 

versus 6 for a range of values of the driving-force parameter. The viscosity ratio 
,4/p = 0 corresponds to a primary drop that is a bubble, and in this case d, = d, = 0. 
The viscosity ratio ,4/p = 100.0 would be representative of a primary drop comprised 
of oil moving in water or a primry drop slightly more viscous than water moving in 
air. In  order to interpret the results recall that d, is due to the outer film interface, 
d, is due to the interaction effect, and d3 is due to the inner film interface. 
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Q (rad) 

FIGURE 4. The drag-correction factor d, as a function of q5 for a viscosity ratiofilp = 0, i.e. a bubble. 
In this case d, = d, = 0. Five values of the driving-force parameter a are shown, and the largest 
value of q5 for each a is 

I I I I 1 

10-1) t 

I I I 1 I 

@ (rad) 

FIQURE 5. The drag-correction factors d,, d, and d, as functions of q5 for a viscosity ratio f i /p = 1.0. 
Four values of the driving-force parameter a are shown, and the largest value of q5 for each a 
is q5max. 

The general trends of the three curves can be accounted for in the following way. 
The term d ,  monotonically increases as q5 increases simply because the effect of the 
outer film interface increases as the extent of the drop covered by the film increases. 
In  contrast, d,  and d ,  have distinct maxima. For small q5 the extent of the film is 
small so that d,  and d,  are small. As q5 increases, d ,  and d,  increase to a maximum 
value and then decrease. This is because both of these terms are associated with 
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I I I 

dl 
(X lo-’) 

1.01 I I I I I 
dz 

(x10-1) - 

O l /  

6 (rad) 
FIQURE 6. The drag-correction factors d,, d, and d, as functions of q5 for a viscosity ratio f i /p = 100. 
Four values of the driving-force parameter a are shown, and the largest value of q5 for each a 
is q5In,r 

motion in the primary drop, and this motion begins toweaken beyond a critical value 
of #. This weakening of the primary drop motion is partially due to the fact that 
as # increases beyond in the contact area between the bulk and primary-drop fluids 
where the motion is being driven is decreasing. However, d ,  and d ,  actually begin 
decreasing before 9 = in owing to the fact that as approaches in from below, the 
film begins to cover that portion of the primary drop where the shear stress in the 
bulk fluid driving motion in the drop is the largest. 

Another noticeable feature is that d ,  is very small. Consequently, the terms in (75) 
involving d ,  and d ,  would generally be the dominant effect except when ,L is large, 
since d ,  is multiplied by I; in the expression for the drag. 

The circulation within the film has the interesting feature that for $/p > the flow 
pattern consists of a double-cell structure. Examples of this are shown in figure 7. 
This criterion for a double-cell structure can be established by examining whether 
or not there are stagnation points on the inner and outer film interfaces, i.e. the 
streamlines 6 = -to(@ and 6 = fi(e). This is accomplished by requiring the tangential 
velocity to vanish, i.e. ~ ( ~ ’ ( 5  = -fo) = i(P-BT) t = 0, 

v‘”(fl =f,) = i (T-iP)  t = 0. 

After substituting for T(0)  and P(S) we find that v(l) vanishes on 6 = -fo at the point 
0 that satisfies 
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P - = 1.47 - = 1.47 

(4 , I I I I 1 

-u --- 
0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 

9 (rad) 
FIGURE 7. Typical fluid-film profiles. Three viscosity ratios are shown b/p = 0, 1.47, 50.0. The 
driving-force parameter a = 1 .O, and SZ = 0 = 4. The pressure parameter e-z(bo +/I,) p ( 0 )  is equal 
to 50.0 in (a), (c) and (e), and is equal to 15.5 in ( b ) ,  ( d )  and cf). 

and v(lf vanishes on 5 = fl when 

where g(0, q5) is given by (73 b ) .  For a specified value of q5 between 0 and n, the function 
-sin0/g(8, q5) has the following properties: 0 < -sinB/g(8, q5) < 1 ,  is zero at the 
contact line 8 = q5, and monotonically increases as 8 decreases from 8 = q5 to 8 = 0. 
Consequently a solution of (79) with 0 less than q5 is only possible when the right-hand 
side is greater than zero, i.e. f i /p  > i. When $/p = the solution is 8 = q5. Similarly 
(80) can only be satisfied for fi /p > 2. For @/p slightly larger than i but smaller than 
2 there would be a stagnation point on the inner film interface between 0 and #, and 
the stagnation point on the outer interface would be a t  the contact line 8 = #. An 
example of this is shown in figures 7 (c, d) .  For f i /p  greater than 2 the stagnation point 
on the outer interface moves away from 0 = q5 as in figure 7 (f). As @/p+ m the 
right-hand sides of (79) and (80) tend to Q and 3 respectively, and the two stagnation 
points would be at  their furthest distance from the contact line. The stagnation point 
on the inner interface may in fact move all the way to the rear as in figure 7 ( e ) .  This 
possibility exists when q5 is less than or equal to 0.6689 rad or 38.33O. This maximum 
value of q5 is the value when the stagnation point furthest from the contact line 
($/p = 00)  first reaches the rear of the drop 8 = 0, i.e. the value of q5 for which 
[-sin 0/g(8, 4)]e-o = Q. Furthermore, the outer-interface stagnation point may also 
move all the way to rear, in which case we have a single cell with circulation opposite 
to that when f i /p = 0. In this case the circulation in the film is being controlled by 
the shear at the inner film interface. The largest value of q5 when this is possible is 
determined from [ -sin8/g(8, q5)]s=0 = 4, and is found to be q5 = 0.2930 rad or 16.79O. 

11 F L Y  132 
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Lastly, note that another film configuration which cannot be ruled out in the 
present problem is that of a film entirely surrounding the primary drop. This case 
would correspond to a solution of (76) with boundary conditions t (0 )  = 1 and 
at/aB(O) = at/aB(n) = 0. Mori (1978) suggests that this is a possible steady-state case, 
but the experimental evidence has not yet verified his claim. Preliminary numerical 
calculations conducted here seem to support Mori. However, numerically determining 
the precise range of parameters when this solution is possible is a somewhat tedious 
and costly calculation, which at present does not seem particularly valuable. 

In the area of direct contact heat- and mass-exchangers, the results from the 
present study are of fundamental value in the development of a successful model. 
A common situation of practical interest is the case of a vapor bubble growing from 
a liquid film in an immisible liquid. For the thermodynamical analysis of this case 
it is important to know the flow field, the film thickness, and the extent to which 
the bubble is covered by the film. 

The analysis may also be employed to indirectly measure contact angles. It is quite 
clear that for a given set of fluids and a fixed volume there is a unique angle $ for 
a particular contact angle. Since the angle 9 is more easily measured than the contact 
angle, this may be a useful method for determining the contact angle. 

This work was partially supported by the National Science Foundation (MEA 
81-07564). 

Appendix 
The position of the contact line B = 9 is most easily determined from a consideration 

of global force equilibrium on the film. That is, the forces exerted on the film by the 
surrounding fluids are balanced by the surface tension forces at the contact line. In 
dimensional quantities this is 

I 

f i +  J fdS+ J (8,9+g0v)ds = 0, 
JS S C 

where 8 and S are the inner and outer fluid-film interfaces, C is the curve formed 
by the contact line 8 = $,faand f are the forces per unit area exerted on the film a t  
the inner and outer interfaces by the surrounding fluid (primary-drop and bulk fluid), 
and 9 and v are the unit vectors tangent to the surfaces L? and S and perpendicular 
to the curve C respectively (see figure 8). Note that the contact angles denoted by b, 
and @, are the angles between 9 and v and a tangent to the sphere R = 1 respectively. 
These angles are material properties, which we assume are known quantities. 

To leading-order the large pressure P w 2 / P  within the drop dominates the surface- 
force terms ( p  = O(e2,u/,uf) 4 1) .  Clearly the viscous stresses which are O(1) are 
negligible. Furthermore, the hydrostatic stresses are also small compared with P-' 
since they are O(pgRE/,kU,, $gRE/,kU,) and are much less than O(,uf/e,&, ($/p),uf/e,k) 
based on the restriction made earlier that 1 -$ /p 9 e,u/,uf. Since the pressure w 2 / p  
and the surface tensions are constant, the integrals are easily computed, giving 

B 2 n R 2  sin2 9 w 2zR, sin ${8, sin (9- b,)+a,sin ($+ @,)}. 
R P  

Recalling that p = ,kUo/a,, we find 

uo sin @, - 8, sin 6, 
A, - g o  cos @, - 8, cos @,' t an9  = 
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\ 

FIGURE 8. The film geometry near the contact line B = 4. 

where in the problem considered here a1 = a,+8,. Similarly we can determine the 
position of the contact line by considering force equilibrium of the front interface 
$ < 0 < IT. Given the contact angle Q1 of the front interface at  8 = $ and the 
surface-tension a1 force equilbrium gives 

sin G1 
tan$ = 

l -COS@, '  

Note that the relation between @, and Go, 6,, a,, 8, and ul obtained by equating 
(A 1) to (A 2) is consistent with the fact that the resultant of the surface-tension forces 
acting on the three-fluid contact line must be zero, i.e. 

a, sin @, - 8, sin 6, = u1 sin @l, (A 3) 

(A 4) a, cos @, + 8, cos 6, = cr1 cos = a,( 1 + cos @, - 1). 

Dividing (A 3) by al( 1 - cos G1) and using (A 4) gives an expression equivalent to that 
obtained by equating (A 1) and (A 2). Also note that the restriction a1 = a,+$, is 
automatically satisfied in the special case when all of the contact angles are small. 

We should point out here that the contact angles need not be small. The reader 
might expect that since the analysis is concerned with small interface deformations 
that this would require the contact angles @,,, 6, and @, to be small. However, as 
was discussed earlier, the present analysis does not provide a uniformly valid solution 
to the problem. In fact, an accurate description for the shapes of the interfaces close 
to the contact line would require an inner solution to be constructed which would 
admit large interface slopes and have a specified slope (contact angle) a t  the contact 
line. This inner solution, however, does not significantly influence the outer solution 
found here, which is valid everywhere except very close to the contact line. The 
passive nature of the inner solution is evidenced by the fact that the solution to (34) 
(the outer solution) is able to satisfy one of the inner boundary conditions, i.e. t ($ )  = 0. 
This situation is a frequent occurrence in asymptotic analysis and additional 
discussion of this point is given by Johnson (1981). 

Lastly, one might anticipate a singularity at the contact line in the viscous stresses 
exerted on the film by the inner and outer fluids. However, this is found to be a 
square-root singularity, and consequently its contribution to the force balance 
considered here is negligible. 

11-2 
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